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EVALUATION

Since so many non-compatible dialects have been written calling themselves
the BASIC programming language, the ANSI X3J2 committee is defining a common
core, that is, a Nucleus, that must be included in valid BASIC interpreters
and compilers. However, the X3J2's fundamental draft specification consisted
of English explanations of the programming language's semantics as addendums
to the more formalized Backus-Naur format of the syntax.

The USAF supports the stabilization and formulation philosophy of this
committee. To provide the desired integrity of the nucleus specification
and, at the same time, to exercise SEMANOL, a specification language under
development, the Air Force contributed an evaluation and formalized
specification of the recommended X3J2 draft specification semantics By
defining the BASIC Nucleus in SEMANOL, numerous potential inconsistencies
and discrepancies in the English-type specification were quickly and

efficiently discovered.
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INTRODUCTION

The project reported upon herein had as its objective the preparation
of a formal SEMANOL specification of the Minimal BASIC programming language
as given by the X3J2/76-01 draft proposal of the American National Standards
Committee. The X3J2 draft pfoposal was of a conventional form and so relied
heavily upon the use of prose text. Consequently, it was recognized that it
was likely to be incomplete and that many parts would very likely be subject
to varying reader interpretations. The preparation of a SEMANOL specification
could then be expected to reveal such ambiguities, as well as to provide a
formal specification document that would be complete, precise, and uniformly
understood. It was also intended that the SEMANOL specification of Minimal
BASIC be operable with a SEMANOL Interpreter program upon the HIS-6180 Multics
computer system; the formal specification could then be computer tested and
otherwise be available for use in programming language development activities.

These objectives were all successfully met. A formal SEMANOL specifica-
tion of Minimal BASIC was written in the SEMANOL(76) metalanguage. SEMANOL(76),
developed under concurrent contract F30602-76-C-0238, is the newest version of
the SEMANOL metalanguage, and its use meant that the readability of the result-
ing Minimal BASIC specification was thereby improved. The use of SEMANOL(76)
also allowed the newest version of the SEMANOL Interpreter program to be used,
with an accompanying substantial improvement in processing efficiency and user
convenience. The specification was completed and was thoroughly tested with
the SEMANOL(76) Interpreter in the performance period; an operational specifi-
cation of Minimal BASIC now exists.

The preparation of the SEMANOL(76) specification cf Minimal BASIC
led to the discovery of many instances of seemingly incomplete, unclear, or
contradictory description in the X3J2 draft proposal. These cases were re-
ported to Rome Air Development Center (RADC) in three reports, and hence to
the X3J2 committee; many of these items are repeated later within this report.
While the writing of a SEMANOL(76) specification could be expected to reveal
some problems, it is felt that the sensitivity of the TRW group doing this
analysis to the subtleties of language desjign and description served to yield

a more comprehensive list of ambiguities than would normally be expected.
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The SEMANOL(76) specification of Minimal BASIC produced in this project can

be useful in several ways. Since the SEMANOL(76) notation is a special sort of

programming language that can be processed by the SEMANOL(76) Interpreter, the

specification can be computer tested until agreement is reached that the spec-

ification accurately reflects its designers' intentions. Great confidence can

thus be gained that Minimal BASIC is properly defined. Tnis form of specifi-

cation then provides:

1[5

A specification that can be uniformaly understood by those who read
it. This specification precision will make clear what Minimal BASIC
is, and so will allow discussion about the language to be clearly and
precisely expressed. We believe that the undeniable precision of
SEMANOL(76) retains a degree of readability that is adequate even for
those having only a general familiarity with the SEMANOL(76) meta-
language; this readability results from the intuitive clarityv provided
by the use of the SEMANOL(76) metalanguage and well developed conven-
tions for its application.

A description of Minimal BASIC which can be used in the development of
language processors built to unambiguous and complete specifications.
A means of directly testing language processor conformance to that
specification. Testing itself must still be done through the use of

a carefully constructed set of test programs written in Minimal BASIC.
However, the correct result of executing these tests is determined by
use of the SEMANOL(76) Interpreter program, and it is these results
against which language processors will be measured. This test pro-
cedure is especially attractive since implementation dependent seman-
tics, including machine dependencies, can be part of the SEMANOL(76)
specification.

A good means for testing the effect of proposed language changes.

Such changes can be described in SEMANOL(76) and the currently
accepted language specification modified to include the proposal. The
descriptive process itself should reveal the scope and implications of
the change, while testing through use of the Interpreter will allow
the effect of these changes to be verified. Changes can thus be

fully understood before they are adopted.
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5. Assistance in preparing programming manuals which are consistent
with language processor implementations. Although it is not expected
that the SEMANOL(76) specification of Minimal BASIC will Ye used by
most programmers as their language reference document, a conventional
programming manual can be prepared from the same SEMANOL(76) descrip-
tive foundation as the language processor with the expectation that
the two will closely match. In addition, the SEMANOL(76) specifica-
tion can be used in programming organizations as a reference document
to answer the subtle and difficult questions about Minimal BASIC
that the conventional manual fails to treat adequately.

The remainder of this report describes the way in which this project was

performed, presents many of the ambiguities found in the X3J2 draft proposal,
describes the SEMANOL(76) specification of Minimal BASIC that was delivered,
and includes a brief introduction to the SEMANOL(76) system of semantic de~
scription. A discussion of a promising approach to formalizing optimization
and machine effects is also given; this investigation went somewhat beyond the

expected scope of performance, but was prompted by the question of '"conformance"

as it was given in the X3J2 draft proposal.




PROJECT PERFORMANCE

The work described in this report was performed in the nine month period
of May 1976 through January 1977. While much of the work was similar to that
which would be involved in writing a conventional computer program, the
special nature of writing a formal specification of a programming language
meant that some of the activities were somewhat unconventional.

The central task to be performed in this project was the preparation of
a formal SEMANOL metalanguage specification of the Minimal BASIC programming
language. The source document used in performing this task was the "Proposed
American National Standard for Minimal BASIC" of January 1976 (X3J2/76-01).

The X3J2 docuanent described Minimal BASIC in terms of a conventional context-
free syntax notation and an English prose description of syntactic constraints,
semantic actions, and certain error treatments. The document augmented the
language presentation with a summary of committee discussions and votes.
Generally speaking, this document seemed to be carefully done; nevertheless,

it presented many problems to arriving at a clear understanding of what Minimal
BASIC was meant to be.

A preliminary analysis of the Minimal BASIC draft proposal was done first
to formulate the general design approach tc be followed and to identify language
features that were unclear. This analysis led to the construction of lists of
(1) implementation dependent parameters, (2) error conditions and responses,
and (3) non-context-free restrictions to be enforced. These lists were derived
from the draft proposal and frequently, particularly for implementation para-
meters, represented extensions to the explicit items of the draft proposal.
These extensions reflected the needs of our planned implementation, as well as
sometimes providing detail that seemed to be missing otherwise. Additionally,
a list of questions about the draft proposal was prepared. This list of sus-
pected ambiguities was compiled with great care, and items were included only
after an intensive search of the Minimal BASIC document failed to provide a
resolution.

The organization and content of the formal specification that was delivered
are described later in this report. The writing of that specification began

with the creation of a context-free grammar; this grammar corresponds very
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closely with that of the draft proposal (although notationally somewhat

different, of course). The semantics of high level interpretation control were
done next, followed by description of the semantics of the various statement
types, standard naming conventions, and input-output. Floating-point evaluation
was done independently and later integrated into the specification. As parts
of the specification were written, they were processed by the Translator until
they were syntactically correct. As complete units were developed, they were
processed by the Executer (equivalent to executing traditional programs) with
simple test cases. Code writing and testing overlapped,and emphasis was given
to the early creation of an operational specification that would be capable of
driving the interpretation of very simple Minimal BASIC programs. The fuller
specification was then developed incrementally.

The computer used in this project was the HIS-6180 Multics system locaced
at Rome Air Development Center, The computer programs (i.e., the Trans-
lator and Executer) used to process the formal specification were actually part
of two different SEMANOL systems. The SEMANOL(73) system, developed earlier,
was operational upon Multics when this project began. However, we were engaged
in a concurrent project to improve the SEMANOL(73) system in contract F30602-
76-C-0238. The concurrent project was planned to produce an improved meta-
language, SEMANOL(76), and more efficient versions of the Translator and
Executer. The specification of Minimal BASIC was thus written initially in
SEMANOL(73) in the expectation that it would later be converted to SEMANOL(76).
Most testing was done by use of the SEMANOL(73) Translator and Executer, and
the test results were then confirmed after the specification of Minimal BASIC
was converted to the SEMANOL(76) metalanguage. Fortunately, the SEMANOL(76)
Translator and Executer were working well when needed by this project. The
conversion to SEMANOL(76) also went very well because it was anticipated and
because the two metalanguage dialects are, after all, not radically different.
Note that the context-sensitive constraints for Minimal BASIC were written
directly in SEMANOL(76), due to SEMANOL(76)'s greatly improved facilities for
stating such conditions, and so constituted an exception to this general
practice. While this conversion took some small effort, it produced a
specification of Minimal BASIC that has the visual advantage of improved
SEMANOL (26) metalanguage readability and the operational advantage granted by
the faster SEMANOL(76) Interpreter. It is therefore, a better specification




than it would have been if it had been done with the SEMANOL(73) system.

While the early analysis of the X3J2 proposed standard revealed some
ambiguities, the detailed specification design process and actual coding
exposed others (and sometimes even clarified items found before that had seemed
to be problems). A list of ambiguities found early in the performance period
was delivered to RADC on 30 August 1976; it was then forwarded to the X3J2
committee by RADC as a public comment on the draft proposal. This original
list was extensively enlarged through further analysis and the enlarged list

sent to RADC on 19 November 1976. This second list of ambiguities alsc

contained our intended solution for each case, and so allowed RADC to evaluate
the acceptability of our interpretations. Many cof these ambiguities and our
reaction to each are presented later in this report. The revised X3J2 Mininal

BASIC specification of December 1976 was also reviewed to determine which
ambiguities of the earlier draft proposal had been resolved and which had not.
A careful reading of the December 1976 document, but certainly not an intensive
study, was also conducted to determine if new ambiguities had been introduced
(a few were found). The results of this work were given to RADC in January
1977. Note that the December 1976 revision was otherwise ignored by this
project because of its late arrival. In summary, a diligent effort was con-
ducted to find definitional problems in the X3J2 draft proposal and to report
these to RADC in a timely fashion. Furthermore, proposed solutions for cac
problem were made to RADC so that RADC participation in each TRW solution

was insured. The ability of a SEMANOL application to find problems in con-
ventional specification methods was again evident in this performance.

One special quality colored the way in which the SEMANOL(76) coding ot

the Minimal BASIC specification was done, and that is the desire for readabilitv.

A SEMANOL(76) program is to be read by people, and readability is shaped at
least as much by style as it is by the language used. Past projects had
established an organization and set of conventions that were felt helpful:
these were applied her:, but they offered only a general outline since cach
programming language is somewhat unique. For Minimal BASIC, the major prohbles
was how best to differentiate between implementation independent features of
the language and those that are meant to be determined by a language processor.
The X3J2 draft proposal considered implementation parameters, if incompletelv,

and so provided rare assistance in this regard. However, many parameters were




overlooked there and needed to be recognized during the specification. There

are also details of implementation, such as those dealing with arithmetic,

that must be supplied in a SEMANOL(76) specification, but which were a form

of overspecification to the X3J2 committee. We have tried to collect all such
parameter definitions and implementation specific semantics into a single
section of the specification, and then to write the remainder of the specifica-
tion sc¢ that these implementation dependent definitions could be easily
recognized. Furthermore, it should be relatively easy for the reader to ignore
these details while still gaining the higher level meaning of the semantics.
This interest, in having a specification structure that can be read to the
depth wanted by the reader, has affected all parts of the specification.

One virtue of the SEMANOL(76) system is that a specification of a program-
ming language that is written in the SEMANOL(76) metalanguage can be computer
tested by use of the Interpreter. The testing of the Minimal BASIC specifica-
tion delivered 1in this project was considered relatively thorough, with
arithmetic expression evaluation semantics being tested especially well. The
testing was done with small Minimal BASIC prcgrams, each of which normally
dealt with a particular form of statement in a given context. Testing of
complicated programs did not appear useful in this project and so was not done.
All parts of the Minimal BASIC programming language were tested, including
samples of all error conditions and context-sensitive syntactic restrictions.
Well over one hundred test programs were successfully processed in this test
phase. While it would be foolish to claim that the resulting specification
is without error, we do feel it has been adequately tested and so is a sound
product.

It should also be noted that performance upon this project raised
various questions about formal semantics and the way they might be treated
within SEMANOL(76) theory and practice. In the case of Minimal BASIC, par-
ticular attention was given to exploring methods by which implementation
dependencies might be precisely characterized without being considered over-
specified. It was felt that practical standards would certainly benefit by
being able to include a characterization more useful than "implementation
defined". Minimal BASIC is simpler than most programming languages and had

been described in the draft proposal with some regard for these matters; it

thus seemed to be a likely candidate for study in this regard. The method




developed through our study appears in the section on Formalization of
Implementation Dependencies in this report. The general method and its
specific application to Minimal BASIC were worked out in moderate detail,

even to the extent that the specification delivered is written to accommodate
a standardized description of computer arithmetic. Unfortunately, this inves-
tigation had not been foreseen and so it could not be pursued further in this
contract.

In summary, this project succeeded. It produced a SEMANOL(76) specifica-
tion of Minimal BASIC. The specification is readable and well tested. Am-
biguities in the X3J2 draft proposal were discovered, reported to RADC, and
resolved for purposes of our specification. Beyond this, a promising method
for formally dealing with implementation dependencies was devised and

reported upon.




AN INTRODUCTION TO SEMANOL(76)

SEMANOL(76) is intended for use in describing (procedural) programming
languages. A specification written in the SEMANOL(76) metalanguage is meant
to provide an exact and complete definition of a programming language that is
comprehensible to a suitably trained reader. That is, SEMANOL(76) is designed
to supply people with a basis for communication about programming languages
that is more precise than commonly employed description methods. Additionally,
the formality of the SEMANOL(76) metalanguage permits operational use of the
specification to be made upon a computer.

The specification method adopted is algorithmic. This choice stems from

a feeling that the semantics of programming languages ought to be explained in
this way. That is, semantics are concerned with explaining how something
happens and not just in characterizing an input-output relationship. Certainly
this is the way in which designers, compiler writers, and application program-
mers generally view the semantics of a programming language. Having a direct
correspondence between the formalf operational, SEMANOL(76) expression of
language semantics and a reader’s intuitive conception of a language yields

a specification method that can be easily understood. An algorithmic method
also permits language details, such as those specific to a given implementation,
to be described exactly when desired.

The SEMANOL(76) method considers a programming system, S, to be defined

by S = (P, I, T, ¢) where

P = The set of programs which can be expressed in the programming system.

I = The set of input values.

T = The set of output traces. The trace is an ordered record of signifi-
cant actions (such as assignment) that are performed by the program
as it is executed; it is the visible manifestation of performing the
algorithm that is the operational SEMANOL(76) specification of
semantics. The trace is thus similar to a state sequence.

¢ = The semantic operator. This operator, given as ¢ : P x I - T, is

considered to define the '"meaning'" of a program.




P, I, and T are each sets of strings which are specified by ¢, and whose
individual members will be denoted by the corresponding lower case letters
(i.e., pe P, i e I, t € T.). The effect of sxecuting a given program, p, can
then be denoted in terms of the semantic operator by

d(p,i) = t

Thus ¢ specifies the trace produced by any program in the system when that

program is executed with any input value sequence. The SEMANOL(76) meta- i
language is used for programming the semantic operator, thereby providing a H
method for formal specification of a programming language. Since the SEMANOL(76)

metalanguage is itself a programming language, it also belongs to a programming

system. To differentiate between these two systems, we will use the subscript
j to identify elements of the programming system being defined by a SEMANOL(76)
program (e.g., Minimal BASIC) and the subscript s to identify elements of the
SEMANOL(76) system. The semantics of a Minimal BASIC program, pj, are then
expressed by

qu(pj,ij) = tJ.

The semantic operator for Minimal BASIC, ¢j, is expressed as a SEMANOL(76)
program, Py which in turn is interpreted by a semantic operator for the
SEMANOL(76) programming system, QS.

Thus we have

¢S(ps,(pj,ij)) . ¢j(pj.ij) =,
and a formal definition of Minimal BASIC is provided by Py The SEMANOL(76)
semantic operator, ¢S, is defined in the SEMANOL(76) Reference Manual and has
been implemented by the SEMANOL(76) Interpreter computer program.

This general view of language definition is shown graphically in Figure 1.
As shown there, these levels of semantic specification correspond to defining

a virtual machine for SEMANOL(76) and, based on that, one for Minimal BASIC.
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As observed, the SEMANOL(76) metalanguage is meant to describe semantic

operators. Consequently, it is a high level language designed for the specific
purpose of completely and exactly describing the syntax and semantics of pro-
cedural programming languages. The metalanguage permits high-level expres-
siveness and makes no special effort to minimize the primitives available. It
thus contains some redundancy in its primitives and permits syntactic variations
where this can aid reader interpretation. Where possible, "conventional"
notation, as found in mathematical exposition and in other programming languages,
is employed so that a reader's intuition will generally lead to a correct inter-
pretation of SEMANOL(76) code. The semantics of execution are described by the
use of SEMANOL(76) in terms of parse trees and elements of the original source
program text, and so can be directly understood by the reader.

While the SEMANOL(76) metalanguage has many features common to other
programming languages, its unique domain of application means that many of its
features are not so common. Like many programming languages, it has:
imperative, conditional, and repetition control statements; Boolean constants
and functions; procedure definitions; recursion abilities; a rich set of
character string operators; functional definitions that provide case selection;
etc. However, many other features are unusual. SEMANOL(76) provides facilities
for defining a context-free grammar, including a feature for context-sensitive
specification of where spaces may appear, and couples that with an operator
for generating a parse tree for a given string from that grammar. Various
operators are then available for use upon this parse tree, including a group
for tree traversal. SEMANOL(76) deals with sequences and offers high-level
iterators, including existence tests, for use on these structures. Arithmetic
is done on numeric strings and so has a significance that is independent of
host machine factors; the arithmetic specified for Minimal BASIC is controlled
by the one doing the specification in SEMANOL(76) and not dictated by the fact
that the SEMANOL(76) system is implemented on a HIS-6180 computer. Assignment
and reference are accomplished through use of a single level associative storage
mechanism. An effort has been made in designing, and revising, the SEMANOL(76)
metalanguage to provide these features in a manner that would stress read-
ability; it is a language where the prospective reader's viewpoint has been

a dominant influence.
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Programs written in SEMANOL(76), such as the specification of Minimal
BASIC, can then be processed by the SEMANOL(76) Interpreter. The SEMANOL(76)
Interpreter accepts a SEMANOL(76) specification of a programming language and
uses that input specification to realize the semantic effect of (i.e., to
execute) programs written in the language thus defined. By virtue of the
Interpreter, SEMANOL(76) specifications can themselves be tested and debugged.
Furthermore, an operational standard foir the defined language is thus created.

The operation of the elements that constitute the SEMANOL(76) system is
shown in Figure 2. The broken line encloses the SEMANOL(76) Interpreter, which
can be seen to actually consist of two loosely connected programs identified
as the Translator and the Executer. The Translator accepts the SEMANOL(76)
program describing a programming language and converts it to SIL code. The
SIL code is an alphanumeric representation that is much more conveniently
processed than the original text. The SIL file is read by the Executer pro-
gram, and the SIL code is then used to control, or drive, the Executer program.
The present Interpreter is operational upon the HIS-6180 Multics System.

It is to be emphasized that this sytem is interpretive, and that neither
the defined language program, nor the SEMANOL(76) program describing the de-
fined language, are translated (i.e., compiled) to machine code. The Minimal
BASIC program text is interpretively 'executed" by the SEMANOL(76) program
describing the Minimal BASIC language, while the SEMANOL(76) program text
(i.e., the SIL code) is, in turn, interpreted by the Executer program.

This two-level interpretation does mean that the execution time of test
programs is slow. The fact that test programs are small has made the situation
acceptable. However, as the SEMANOL(76) system has begun to emerge as a

prospective part of language standardization and control, the importance of

efficiency has increased. Thus efforts are underway to improve the current
programs and also to develop a new design. The new design would move in the
direction of changing the current Translator into a generator of executable
code (i.e., it would generate interpreters). This new design would remove one

level of interpretation and so provide a substantially more efficient process.
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THE MINIMAL BASIC SPECIFICATION

The production of a SEMANOL(76) metalanguage specification of the Minimal
BASIC programming language was the major accomplishment of this project. This
specification is complete and was extensively computer tested; it is believed
to be in sound condition. The nature of this specification of Minimal BASIC

is discussed hereinafter.

The SEMANOL(76) metalanguage provides a normalized notation to be used for
describing the syntax and semantics of programming languages. The metalanguage,
and certainly the underlying theory of semantics as well as the specification
conventions used with SEMANOL(76), result in a programming language being de-
fined in operational, interpretive, terms. Indeed, it is fair to think of the
SEMANOL(76) metalanguage as a programming language meant to be used in writing
programs that are interpreters of source text strings of the language being
defined. Since the Minimal BASIC specification is such a program, it is de-
scribed here largely in its role as a computer program that processes Minimal
BASIC program text. This means that the organization of the specification is
dealt with, signiiicant data structures discussed, modeling algorithms described,
and stylistic conventions generally mentioned. As with any conventional doc-
ument or computer program, the manner in which the Minimal BASIC specification
was written reflects a certain individualism, even though constrained by con-
ventions and the application of standardized techniques. Hence, the Minimal
BASIC "specification program'” presented here is certainly not the only one that
could be allowed; nor is it likely to satisfy all readers with regard to its
readability (despite our hopes that it might). But it has been carefully
computer tested, and this does give us confidence that it is a valid specifi-

cation of Minimal BASIC.

We should note that this section of the report is meant to serve as an
introduction to the formal SEMANOL(76) specification of Minimal BASIC as well
as to be a self-sufficient description of that specification. So that the
text may do both, this section uses the actual names appearing in the semantic
and syntactic definitions of the specification. These names are thought to

be suggestive enough of their definitions that they may be informally used
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here without comment (i.e., they are strongly intuitive). The definition
names are generally hyphenated, and can be recongized in that way (e.g.,

numeric-function, numeric-let-statement-effect).

The operation of the specification program is shown in Figure 3. The text
of a candidate Minimal BASIC program is first parsed. This parse step uses a
context-free grammar, given by SEMANOL(76) syntactic definitions, and is
accomplished in response to the #CONTEXT-FREE-PARSE operator of SEMANOL(76).
A successful parse is followed by testing of the parsed program to determine
that it complies with the seventeen context-sensitive restraints that valid
Minimal BASIC programs must meet. Syntactically valid programs then have their
execution effects (i.e., semantics) precisely modeled in terms of program oper-
ation. Program operation is modeled with regard to statement effects, state-
ment sequencing, expression evaluation, and storage modeling. Because this
specification was to be tested and otherwise usable, it is a specification of
a specific language processor; it thus contains semantic definitions that
explain execution in very exact terms for a specific computer. This general

approach is expanded upon in what follows.

The first element of the SEMANOL(76) specification program is a declara-
tions section; this section contains the names of any global variables used
in the specification of Minimal BASIC and the names of syntactic components.
Only 12 global variables are used in describing Minimal BASIC, and the use of
most of these is described subsequently. Syntactic components, on the other
hand, are declared in generous number. Because SEMANOL(76) is a functional
language, there are many functions in the Minimal BASIC specification that are
invoked repeatedly with constant parse tree arguments. These functions would
thus compute invariant values needlessly. By declaring the names of those
definitions that produce constant values for a given parse tree argument, the
SEMANOL(76) Interpreter program is told to perform the computation of these
functions only once for a given argument. The computed value is then associated
with the argument node on the parse tree; later invocations of the function for
that node need only retrieve the saved value rather than perform the computation.
Syntactic components thereby contribute to processing efficiency but not to
semantic description per se. Their use does mean that there is little perform-

ance penalty paid for being able to widely employ a readable functional notation.
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The first operational step involved in defining Minimal BASIC is to parse
the given program text. The syntactic definition structure used in the
SEMANOL (76) metalanguage is similar to other context-free syntax notations.
Thus the grammar we have defined for Minimal BASIC is able to be similar to that

of the X3J2 document; it differs only when necessary to support semantic de-

scription or to correct discovered ambiguities. The result of parsing an input

string with the grammar is to transform the given source program into a

corresponding parse tree representation. If the program cannot be parsed or

would yield multiple parses, a diagnostic message results. Observe that the
second error condition reveals that the grammar defined by the SEMANOL(76) 5
definitions is ambiguous; hence, the formal specification is itself in error.
Since the SEMANOL(76) parsing operator is unrestrictive, the grammars that are
allowed cannot be proven unambiguous but only carefully tested in an effort
to avoid ambiguity. The specification thus recognizes this potential residual
error condition. (We have considered changing SEMANOL(76) in this regard, so
that grammars would be restricted to the extent that they could be proven
unambiguous, but have not yet convinced ourselves that this is appropriate
for a formal description system of wide applicability). The parse tree rep-
resentation formed here then becomes the basis for further specification.
Following a successful parse, a series of tests is made upon the parse tree
representation to decide whether or not the context-sensitive syntactic restric-
tions of Minimal BASIC have been met. These syntactic restrictions are con-
ditions that cannot be expressed in a context-free grammar, and so must be
separately prescribed. The restrictions given in the SEMANOL(76) specification
for Minimal BASIC are drawn directly from the X3J2 document, so their inclusion
needs no further justfication. The imposition of these restrictions at this
point in the specification, prior to execution (e.g., as a compiler implemen-
tation would commonly impose them), is in keeping with the X3J2 document. For
example, the requirement that numeric-function names be unique is meant to
apply to a program as a whole, rather than applying only to numeric-function
names that are actuall,; invoked during execution. Observe that the notion of
, a legal (i.e., conforming) Minimal BASIC program is affected by the choice of
‘ when the test is applied; thus the placement chosen for these tests within

the Minimal BASIC specification is significant.
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.The specifications of these context-sensitive tests use the high-level
iterators of SEMANOL(76), #FOR-ALL and #THERE-EXISTS, especially, to advantage.
The most prevalent approach is to construct a sequence of program elements of
interest, and then to test each in turn against the remainder of the program
for existence, or lack, of the desired condition. For example, a #SEQUENCE-OF
numeric-function-reference nodes is formed from the parse tree in one test.
(The elements of this sequence are easily specified since the parsing process
has caused each such reference to be identified and the associated syntax
class name to be included in the parse-tree representation.) Each reference
is selected in turn by the #FOR-ALL iterator, and tested against all the
elements of the #SEQUENCE-OF def-statements to see if a name match exists. If
not, a "missing-function-definition" condition has been found; the prospective
Minimal BASIC program is thereby deemed illegal, and it is interpreted further
only to the extent that the remaining context-sensitive tests are performed.
Note that the def-statement sequence is declared as a syntactic component, and
so is computed only once in this process (even though not explicitly computed

and saved). The iterator and sequencing operators of SEMANOL(76),combined

with the use of parsed representation, result in these tests being stated

succinctly and clearly.

The semantics of program execution are then explained in operational

terms. A top-level control section is used to describe both the computational

effects of executing a statement and the execution successor for each statement.
The computational consequences are described in a series of semantic effects i
definitions, a set of definitions being associated with each statement class _
and thoroughly treating all possibilities. Similarly, sequencing rules are ?
given by a series of successor definitions. Major subsidiary parts of the .
specification then deal with evaluation details and standard names used in 3

storage modeling. The various Minimal BASIC statement types are considered

within this framework in what follows.

The primary computational elements in our specification of Minimal BASIC
are the numeric-let-statement, string-let-statement, input-statement, read-

statement, and print-statement; the consequence of executing each is given in

PP S ST

an associated "effect'" semantic definition (e.g., numeric-let-statement-effect).

ST
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The numeric-let-statement-effect is to assign the value of the right-hand-
side expression to the left-hand-side name. The semantics of evaluation

are then contained in numeric-value, described later, while the formation of
the left-hand-side name is described by a standard-name definition, also
described later. Thus the high level semantics are given in this control
section, with the details to be found in subsidiary semantic definitionms.

The semantics of the string-let statement are handled in an analogous manner,

in this case using string-value for right-hand-side evaluation.

The effect of input-statement execution is given for the interactive case.
This means that an input-prompt-character is first output. After that, an
input-reply is read, checked, and its values assigned. The output listing
produced by operation of this definition simulates that which would be produced
at a terminal during an interactive input dialogue. The semantic definition
here makes use of the small context-free grammar for input-reply to parse
the input string for ease of processing; it also uses the grammar of numeric-
constant in a recognition test. The conversion of numeric input strings for
assignment is accomplished by the implementation-numeric-representation con-
version operator (considered later), thus defining the mapping from an external
representation to an internal representation (the X3J2 document expects such a
distinction, in recognition of the use of various computer dependent arith-
metics). No such mapping is needed for strings,eexcept possibly to remove
quotes, since the semantics of string operations are independent of implemen-
tation representation. Much of the semantics of the input-statement then deal
with testing the input-reply for correctness (e.g., the right number of data
items, matching types, items teing in range) and describing the action to be
taken in the case of error. All errors result in diagnostic messages being
sent to the user and the input-statement processing being repeated; that is,
the semantics call for the user to re-submit incorrect input-replies. Note
that no assignments are made until all data items in an input-reply have been

judged valid.

The series of input-replies for a Minimal BASIC program is read as a single
block of characters by the #/INPUT operator, when processing the first execution

of an input statement, and assigned to the global variable input-file. The
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modeling of input-statement effects then provides for unblocking these input-
replies. This is accomplished by scanning to the end-of-input-reply-char,
assigning the input-reply thus delimited to the global variable input-line,
and then removing this input-reply from the input-file string. The model thus
does not literally provide interaction, but does permit any input dialogue to
be simulated.

The semantics of the read-statement are very similar, and the conversions
of strings to internal representations are identical with those of the input-
statement. The error semantics, naturally, differ somewhat. The current
position in the sequence of data items, extracted from data-statements, is

maintained in the global variable data-list-pointer. This position index is

incremented each time an element is read, and is reset to one by the restore-
statement-effect. It should be noted that the conversion of data-statement
constants must be specified to (effectively) occur at read-statement invocation 1
time, as described here, since the type of the data items cannot be determined

by their syntax; the type of the constants depends upon the type of the variables
to which they are assigned. This condition is certainly implied by the
SEMANOL(76) specification, but it may be a case in which the constraints upon

an implementation are not as obvious as one would like.

The semantics of print-statement-effect are lengthy because the formatting
possibilities of Minimal BASIC are rather extensive; however, they are generally
straightforward except for numeric conversion specification. Numeric conversion
is complicated because the printed form depends upon the value of a number,
different ranges having different formats, and because implementation factors
intrude here. The approach used is to convert the implementation-number
representation to the corresponding canonical-form, a string format that
conforms to a reduced Minimal BASIC syntax, and then to apply the numeric-
output-representation operator to this canonical-form. The translation to
canonical-form is implementation dependent; however, the numeric-output-rep-
resentation semantics are not dependent on internal numeric representation
factors. Numeric-output-representation classifies the canonical-form, selects
the printing format.and converts the canonical-form to the format selected.

The implementation dependent factors that influence print representation (e.g.,

significance width, class ranges) are applied in this process. It is important
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to realize that the implementation parameters of internal value representation

and those of output print representation, while naturally related in implemen--
tations, are given separately by this method; a great deal of flexibility is

thereby provided with which to describe implementation families.

Complementing the description of statement effects is the specification
of statement sequencing semantics. The same simple sequencing rule applies to
all the statements just described; namely, advance to the next executable
statement. This is described in terms of the global variable current-statement
and the sequence-of-statements-in the Minimal BASIC program. The sequence-of-
statements-in definition directly forms an order~d list of statement nodes from
the parse tree representation, while current-statement then contains the node
of the statement presently being interpreted. Simple sequencing, as done here,
then involves moving forward from the current-statement position along the
sequence-of-statements-in the program to the next executable statement node.
This successor node is then assigned to current-statement, and interpreted
of that statement initiated. The semantics of simple-control-statements are
found in the specification of their successor semantics; they have no effective
computational part. For instance, the branching influence of a goto-statement
is found in the definition of goto-statement-successor. Here, the destination
line number is extracted and a statement line with a matching line number value
is sought. If one is found, the node of that statement is assigned to current-
statement and the control branch thus realized. The situation for if-then- .

statements and on-goto-statements is similar.

However, other control statements are more difficult to model. The gosub-
statement has an effects part that locates the node of the first executable
statement after the gosub-statement and places this at the front of a sequence
assigned to the global variable return-point-list. A semantic test is made at
this step to see that the length of this sequence, which corresponds to the
number of outstanding gosub-statements, is within its established limit. The
successor of a gosub-statement is then found exactly as was the goto-statement
successor. The semantics of the accompanying return-statement are then given
by return-statement-successor. That specification calls for the statement node
at the head of the return-point-list to become the current-statement, after
which the node is removed from the return-point-list. By this means, a simple
stack model is used to describe gosub/return semantics.
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The control semantics of for-blocks are more complicated. They are
essentially described in terms of a sequence of triples, the sequence being

assigned to the global variable active-for-block list. Each triple consists of

the control variable, the value of the limit, and the value of the increment
associated with a particular for-block. This entry is made when the effect of
a for-statement is being computed upon for-block initialization. At the same
time, the initial value of the loop variable is found and assigned to the con-
trol variable. The successor of a for-statement depends upon the value of the
control variable. If the limit value has not been exceeded, then the next
executable-statement (i.e., the first statement in the for-block) is made the
current-statement. If the limit has been exceeded, the most immediate lexically
following next-statement having the same control variable is sought, and

Lts successor becomes the current-statement. Additionally, the triple

for the terminated for~statement is deleted from the active-for-block-list.

This specification makes clear the nature of loop testing and emphasizes

the static notion of for-blocks that has been adopted for Minimal BASIC. The
effect semantics of the next-statement cause the value of the control variable
to be modified by the loop increment value held in the active~for-block-list
sequence. The successor of a next-statement is always the most immediately
prior for-statement with the same control variable (another affirmation of

the static for-block structure). Note that a global variable is used in our
specification to distinguish between block initialization and iteration. This
variable, first-time-through, is set #FALSE when iteration via next-statement
successor is occurring; that setting prevents for-statement creation of another
active-for-block~entry for that for-statement, and it then is immediately set
#TRUE. This variable is thus #FALSE only for the very brief interval between
the completion of next-statement interpretation and initial testing within

the definition of for-statement-effect.

The semantics of storage modeling, for assignment and reference, are pro-
vided by the facilities of SEMANOL(76) and the definition standard-name-of.
The SEMANOL(76) functions of #ASSIGN-LATEST-VALUE and #LATEST-VALUE are used
directly throughout the specification, with the naming reference being formed
by standard-name-of. Because Minimal BASIC has only very simple data structures

and referencing rules, there is no need for complex storage models; hence,
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abstract reference names can be used without any need to descend to bit-level
machine parameterization. Simple-numeric-variables and string-variables retain
the name given in the Minimal BASIC text (e.g., 'N" has a standard-name-cf "N'",
"C$" remains '"C$"). Parameters in function definitions are qualified by the
function-name (e.g., "FNK(A)" would lead to a standard-name-of "FNKA'"); this
simple device satisfies the scoping rules of Minimal BASIC. Numeric-array-
elements follow much the same pattern (e.g., "B(4,2)" becomes "B(4,.))" in this
process) but. are somewhat more complex to describe since subscript expressions
must be evaluated and the value then normalized. This normalization causes
subscript values to be rounded to integers, converted to canonical-form, and
have any leading zeros removed. For instance, "01'", "1", and "11E-1" are all
translated to "1'". Subscript values are also tested against their allowed
range, whether declared or implied; thus this semantic specification provides
run-time bounds checking. This method of name derivaticn is simple and direct;

it should be easily understood.

Expression evaluation semantics are given by the string-value and numeric-
value definitions. Since Minimal BASIC does not have string operators, string-
value is virtually trivial and need only recall a string-variable from storage
or remove quotes from a string-constant. Note again that the internal rep-
resentation of a string is identical to its representation in the Minimal
BASIC programming language (and that this representation is likewise identical
with that of SEMANOL(76)); thus the semantics are indeed implementation inde-
pendent. Numeric-value is more complicated since Minimal BASIC provide~ a full
range of numeric expression possibilities. Numeric-value definition also
requires that the details of some implementation arithmetic be included. That
is, a SEMANOL(76) specification is always an implementation if it is to be
complete and so able to produce interpretive results; therefore, details of a
precise arithmetic (as well as data representations) must be given. Tt is
suggested later how a specification might be written to define implementation

"closeness'" to standard results. While that method

constraints in terms of
was not entirely implemented in our specification, our specification was written
in anticipation that the method might be used and this consideration will be

evident in the specification.
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Numeric evaluation thus uses three forms of arithmetic: implementation
arithmetic, standard arithmetic, and canonical arithmetic. Operators for each
class are then identified by using one of these three terms as a prefix (e.g.,
standard-add, implementation-add). Standard arithmetic is a high precision
arithmetic that is implementation independent; it is used to define standard
results against which implementation results might be tested. Canonical

arithmetic is a subsidiary arithmetic, also implementation independent, that is

primarily used in defining standard arithmetic. Standard arithmetic operates
upon numeric-constants of any allowed Minimal BASIC syntax, while canonical
arithmetic operates upon constants of a more uniform syntax. By converting
constants to canonical form, and performing arithmetic operations upon ca-
nonical constants, the semantics of evaluation are thought to be more easily
explained. The result of applying standard operators is to generate canonical
constants (since some choice of result representation must be made); canonical
operations likewise yield canonical results. One could, of course, write the
Minimal BASIC specification so that the standard arithmetic were used as the
implementation arithmetic; we have essentially done this in past specifications.
However, we have introduced a distinct implementation arithmetic so that
constraints might later be included more easily. This approach may also help
make clearer where implementation defined factors intrude upon the programming
language definition, since each implementation specification can only be made

complete by providing descriptions for these definition names.

Since we have no particular computer to model, the implementation arith-
metic specified is a decimal one that is intended to provide the minimum sig-
nificance and range called for in the X3J2 draft proposal. This implementation
arithmetic is able to use the definitions of standard arithmetic, and so it is
briefly described in our specification. Various implementation factors are
then parameterized, examples being implementation-precision, implementation-
infinity, and implementation-zero. A variety of decimal implementations can
thereby be easily formulated. Implementation operations are tested for causing
overflow or underflow, attempting division by zero, or attempting an undefined
form of involution. The response to these actions is defined to be implemen-
tation independent in the draft proposal, and so is part of the evaluation

semantics, although the specific result is itself implementation determined.
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For instance, implementation underflow is always to be responded to by return-
ing a value of implementation-zero; the algorithm thus appears in an implemen-
tation independent part of the Minimal BASIC specification, but the definition

of zero is part of the implementation dependent semantics section.

The semantics of numeric-value are then given in a recursive way (e.g.,
the numeric-value of "A+B'" is given by applying the implementation-add operator
to the numeric-values of the two operands), with the rescursion being grounded
in constants, variable references, or function calls. Numeric constants are
translated to an implementation representation by exactly the same method as
are input constants. The values associated with variable references are in an
implementation form already, thus need cnly be recalled by #LATEST-VALUE,
Function calls are processed by invoking a semantic definition that (1)
determines the numeric-value of any argument-expression, (2) assigns this
value to the standard-name of the dummy parameter, and (3) then causes the
numeric-value of the function expression to be determined. Function definitions
are very simple in Minimal BASIC, thus their semantic description is likewise

uncomplicated by obscure control factors.

A portion of the semantic description of evaluation, named relation-
value, deals with specifying the nature of relational tests. The general
structure here is much like that used with expression evaluation in that
there is a string-relation-value part and a numeric-relation-value part. The
string-relation-value part deals only with equality or non-equality, and it
deals directly with the string representations since their syntax is identical
to that of SEMANOL(76) strings. The numeric-relation-value part must consider
a variety of relational test options and do so with regard to the implementation
sensitive nature of these tests. The semantics of each test are thus given
in implementation terms upon implementation numbers. So, just as there is an
implementation arithmetic, there is a set of implementation relational oper-
ators (e.g., implementation-equals-test). These implementation relational
operators, as with arithmetic, are given in our specification in terms of the

corresponding standard relational operators.

The evaluation of numeric-supplied-functions (e.g., SIN, COS, LOG) is in-
tended to be implementation specific in Minimal BASIC. In our specification,

this is shown by providing, in the implementation dependent part of the
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specification, a definition for each function that is an interface to a
corresponding external procedure. SEMANOL(76) has an #EXTERNAL-CALL-OF operator
for such linking; the interface definitions are then responsible for mapping

the internal representation of the actual argument(s) to the string format
needed by the external procedure, and then mapping the result back to the
internal format needed. By this device, library procedures can be used pro-

vided the library procedures themselves conform to the conventions of

EXTERNAL-CALL-OF. 1In particular, the external procedures must accept and

return string values.

While this description of evaluation is brief, the code involved is
rather lengthy because of a need to consider the boundary conditions and
otherwise provide an implementation model of semantics, something other formal
description methods do not generally offer. The presentation is meant to be
one that can be read down to the level of desired detail; thus arithmetic

intricacies can be avoided if unwanted.

In addition to the specification elements already discussed, there is a
part of the specification that is composed of a collection of definitions that
constitute selector functions. These selector functions are applied to the
parse tree to return specified nodes or values and to test the syntactic clas-
sitication of a given node. These functions are meant to be obviously named in
order that overall specification readability can be increased by reference to
them. They have been collected together because of their wide applicability
and commonality of purpose; they provide a low level of detail and are corres-

pondingly simple in their operation.

While a few forms of error testing were mentioned, the specification
throughout attempts to detect any "run-time' error that can occur. In general,
these were recognized in the X3J2 document and the response provided in the
specification agrees with that report. Since SEMANOL(76) provides an inter-
preter approach to specification, the description of these error conditions
and response semantics is easily done. The specification also has been

written so that each semantic definition includes, as a comment, an assertion
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about the nature of its input values. The reader can thus readily ascertain
what form of arguments each definition is expected to receive. The assertions
are expressed in SEMANOL(76) notation so that their meaning is precisely given,
but their correctness has not been computer tested. (To confirm these assertions
operationally is presently awkward, and would lengthen the specification to no
great advantage. We are contemplating the inclusion of an operational assertion

testing facility in later systems.)
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QUESTIONS OF INTERPRETATION

The preparation of the formal SEMANOL(76) specification of Minimal BASIC
necessarily demanded a careful reading of the X3J2 document upon which the
formal specification was to be based. This analysis was done so that the needed
details of Minimal BASIC could be determined and a complete, precise model of
the Minimal BASIC programming language thereby formulated. Since a SEMANOL(76)

specification is a type of program, this process is similar to that involved

in translating any prose description into a computer program; as is true gen-
erally, this process of "implementation'" revealed many cases in which the X3J2
prose document was unclear or incomplete. This was true despite the great
efforts made by the TRW project group to resolve such questions through contin-
uing analysis of the X3J2 document; that is, we made a much more intensive
effort to resolve problems than we would expect most other readers of the

draft proposal to make.

Our analysis was also unique in that we deliberately sought to identify
statements that seemed to allow multiple interpretations. We were not seeking
to write a formal specification that could be defended as consistent with some
interpretation of the X3J2 document, as one might do when implementing a
language processor, rather we were attempting to formalize (i.é., make more pre-
cise) the notion of Minimal BASIC given in that X3J2 document. Thus we sought to
be very sensitive about recognizing the points at which we were making decisions
that were at all questionable with regard to reasonable interpretations of the

draft proposal. While this can sometimes seem to be quibbling, it is important

that an ANSI standard be uniformly understood; in our case, it is also impor- '
tant that the derivation of the SEMANOL(76) specification be explained. |
The list of items given here reflects problems in the X3J2/76-01 draft,
each of which was reported to RADC in considerably greater detail. Each item
is then accompanied by the interpretation that was provided in the SEMANOL(76)
specification that was delivered. These items reflect one consequence of
using the formal SEMANOL(76) methods; namely, the identification of areas of
imprecision and incompleteness in conventional programming language specifica- 4
tions. They also reveal problems to which we had to devote considerable

energy. The ambiguities were these:
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1.

While the X3J2 draft proposal does consider implementation represen-
tation of numbers, unlike many such specifications, its coverage is
inadequate. It fails to define the sign of zero, if zero is uniquely
represented, or to say if both plus and minus zero are to be allowed;
contemporary computers are certainly not uniform in this regard, so
different readers may naturally come to different conclusions. The
answer to this question can affect (1) the value of relational expres-
sions and (2) the value of zero divided by zero, since the result of
division by zero is to have a magnitude of machine infinity and the
sign of the (zero) numerator. There is also a question as to whether
the implication that the representations of the largest magnitude
values (i.e., machine infinities) and of the smallest non-zero mag-
nitude values (i.e., machine infinitesimals) are to be the same for
the corresponding positive and negative cases is intended. That is,

a symmetric representation seems to be intended (e.g., negative-
machine-infinity and positive-machine-infinity will have equal mag-
nitudes). While this inference seems reasonably clear, and the benefits
of symmetric representation are recognized, many current machines do
not support such a symmetry, and to impose this requirement for them
may lead to unwanted inefficiency in conforming implementations.

Because of this, a question of intended meaning does exist.

To provide generality, our specification includes both positive-
machine-infinity and negative-machine-infinity so that these magnitudes
may be defined independently. A positive-machine-infinitesimal and
negative-machine-infinitesimal are specified in an analogous wayv.

For clarity and semantic predictability, we have defined zero to have

a single representation, machine-zero. These parameters are then

used in the implementation dependent semantics so that each represen-
table number cannot be greater than positive-machine-infinity nor less
than negative-machine-~infinity. Furthermore, only one of the relations
of equality, greater than, or less than can hold between two numeric
representations. The only numeric representation between positive-
machine-infinitesimal and negative-machine-infinitesimal is machine-

zero. This choice of implementation parameters should allow a full
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range of Minimal BASIC language processors to be modeled precisely.
The specification delivered has defined the magnitudes of non-zero
machine limits to be the same in both positive and negative directions;
it thus agrees with the draft proposal implications. The sign of zero

has been specified to be plus, ac that choice seems ''matural".

The description of for-blocks is especially troublesome since the
draft proposal, beyond being unclear, did not permit us to derive

a defensible model from what was given. Much of this problem appears
té result from inadequately distinguishing between the dynamic and
static properties of for-blocks. While it is recognized that both
compiler and interpreter oriented processors are to be allowed, the
wording of the draft proposal does not seem to be consistent with any

implementation model.

We have chosen to prepare a specification that seems compatible with
what we believe the draft standard is attempting to say. In this
specification, the for-statement and the next-statement are defined
in conjunction with each other. The physical sequence of statements
beginning with a for-statement and continuing up to and including

the first next~statement with the same control variable is a '"for-
block'". The first and last statements in a for-block are its for-
statement and its next-statement, respectively. Any other statements

in a for-block are its interior statements.

Each minimal BASIC for-block is either inactive or active; each is
inactive at the initiation of a program. A for-block becomes active
only upon execution of its for-statement; thus a physically contained
for-block does not become active upon the execution of the for-state-
ment of one of its physically containing for-blocks. An active for-
block becomes inactive only when either (1) the normal exit from the
for-block is taken or (2) control is transferred to a for-statement
(which may or may not be the one associated with that for-block)
having the same control-variable. Thus contained for-blocks are not

deactivated when containing ones are.

A program attempt to execute the next-statement of an inactive for-

block is an error.
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As given, the semantic definition of the draft proposal can generally
be construed to define a static declarative nature for DIM and OPTION
statements that is unaffected by whether such statements are executed
or not (i.e., such statements are always declarative and may also be
executed). However, this matter is confused by the resolved questions
part of the draft proposal which fails to adequately recognize the
differences between static and dynamic interpretations that can exist.
In particular, it is not made clear how initial (pre-execution)
conditions are established; this is especially needed so that later
enhanced versions that permit (multiple) executable declarations may

be consistent with this minimal version.

Our specification treats DIM and OPTION statements as being purely
declarative; they are not executable-statements. Only one OPTION
statement is allowed in a program, and only a single dimension-state-
ment may refer to a given array name; these rules are imposed by con-
text sensitive restrictions and so enforce a static interpretation of

these statements.

The number of printable characters in an implementation output line,
called the "margin', is not clearly defined nor is its execution
effect. In the definition of margin, it is unclear whether the end-
of-print-line character (or characters) is to be included or not in the
the margin count. The description of print then is contradictory as

to whether the last print position of an output line can be used, the
confusion being introduced for print items that exactly fill out the
last print zone of a line and so cause the columnar position, which
points to the next available print position, to exceed the margin.

The draft proposal seems to say that such items are to be printed on

the next line.

Our specification does not consider the end-of-print-line token to be
included in the margin value. It also assumes that the last print
position in a line is meant to be used for printable characters; thus
it will allow print items to exactly fill the last print zone of a

line.




There were two unresolved questions relative to NR2 print conversion.
First, if d (the number of significant decimal digits to print) is
given an implementation value less than th&: required to exactly
represent every implementation numeric representation, then it is not
stated whether truncation or rounding should be used for reducing the
precision to d significant digits. Second, the criterion given for
selecting NR2 form conversion is unclear in defining a decimal in-

terval and is inappropriate for non-decimal implementations.

Our specification first translates an implementation numeric represen-
tation to a standardized output numeric representation. While the
mapping itself is implementation specific, the numeric output repre-
sentation, which conforms to the syntax of Minimal BASIC, is not.
Decimal rounding is then applied to this output representation when
the precision of a constant must be reduced for printing. The test
for NR2 form conversion is applied after rounding and employs the
inclusive interval[-l,99:::9], where  9's are used in the upper
bound. This interval is consistent with the draft proposal if decimal
rounding is applied to a decimal numeric representation. (But observe
that if an implementation numeric representation is not decimal,
specifying rounding and the NR2 interval in decimal terms can impose

unexpected processing burdens on an implementation.)

It is unclear whether leading zeros in the exrad of NR3 conversion

forms for printing are permitted.
Our specification does not provide leading zeros.

The effect of the comma separator in print lines is ambiguous since

the phrase 'current print zone', used in describing that effect, is

nowhere defined. Specifically, the evaluation of the comma when the
columnar position is equal to the first print position of a zone is

uncertain; should it have no effect or generate a zone's worth of

spaces?

Our specification effectively defines the current print zone to be
the one that includes the present columnar position (rather than the

print zone that received the last output character). Thus a zone of
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spaces, or an end-of-print-line, is generated in the situation just

described. This specification agrees with a comment made in the

resolved questions part of the draft proposal.

8. The issue of when a print line must be presented to the user is un-
answered in the draft proposal. 1Is generation of an end-of-print-
line sufficient to cause the current print line to be immediately
output? What happens if the current print line is not empty when g

program execution terminates? i

Our specification assumes that end-of-print-line generation is neces-
sary and sufficient to cause the current line to be transferred to

the output device; on termination, a non-empty current line is returned
to the user. In large measure, this solution mimics that of conven-

tional interactive implementations.

9l The specification of what is to be done upon encountering underflow
when converting a number in an input-reply is directly contradictory
in the draft proposal; one statement is made that the value under-
flowing should be replaced by zero, while elsewhere it is stated that

such underflow is an error.

The weight of the draft proposal seems to be on the side of assigning

a zero value, thus that is what we have specified in all cases. Add-
itionally, our specification is written so that generation of a non-
fatal error message is made an implementation option that is determined
by a parameter setting. Thus production of this message is easily

turned on or off.

10. It is not specifically stated whether or not program constant con-
version must agree with the conversion applied to constants received
by INPUT; that is, whether the implementation representations of two
syntactically identical constants, one of which appears in the Minimal
BASIC program itself and the other of which appears in an input reply,

are to be identical.

While nothing specific is said, the tone and organization of the
specification imply that the conversions should be uniform. We use

the same implementation conversion rule in both cases, and so explicitly
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11.

12.

——

show that these conversions are meant to be the same.

The action to be taken in some error conditions is unspecified; these
are instances in which a given property 'must" (or '"shall") obtain
but which is ignored in the error conditions section part of the
draft proposal. Specifically,

(1) '"The value of the integer represented by a line-number must

he non-zero;..."

(2) "The declaration for an array, if present at all, must occur
P
in a lowered numbered line than any reference to an element

of that array."

(3) "...(the number of arguments must correspond exactly to the

number of parameters)...'

(4) "A function definition shall occur in a lower numbered line

than that of the first reference to the function"

We have taken each of these to be a fatal error that is detected by

a context-sensitive test applied prior to execution interpretation.

The rules that govern the appearance and treatment of strings having
a length exceeding 18 characters seem unclear. Strings may appear
in

(1) relational-expressions within if-then-statements,

(2) string-expressions in string-let-statements,

(3) string-expressions in print-items,

(4) dinput-replies and data-statements.

The treatment to be given long strings in each of these cases is not

given explicitly, or seems inconsistent in some instances.

OQur specification imposes no syntactic restrictions upon string length
in either the context-free grammar or in the context sensitive restric-
tions initially applied. Thus long strings may appear freely within
the text of a Minimal BASIC program. String expression evaluation is
done dynamically, but it too disregards string length. However, as-
signment to string variables is subject to the condition that strings

have a length equal to or less than max-assignable-string-length, an
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implementation parameter whose integer value must be at least 18.

This specification permits long strings to be printed, as clearly

intended in the draft proposal, and also to be tested in relational-
expressions. It also permits long string constants to appear in
string-let-statements, but such assignments are prevented (i.e., an
attempt to execute such a statement is an error). Similarly, long
string constants may appear in data-statements but cannot be converted
when processed by a read-statement. Long strings in input-replies are

likewise rejected.

13. There is a question as to whether it is legal to have parameterized
user-defined-function definitions that do not reference the parameter

in the expression. For example, is
100 DEF FNZ(X)=A(9)*4
to be allowed?

Our specification allows such usage; thus the example is considered

legal.

There are a number of lesser ambiguities that provoked considerable o
cussion and analysis of the draft proposal. In these cases, a '"reasonable”
interpretation could be constructed without great ditficulty; however, thes:
interpretations carried with them a recognized degree of doubt that others
would arrive at these same conclusions. These ambiguities are examples of
troublesome wording that should be clarified tc improve the uniformity of
reader understanding of the draft proposal. (We have suggested editorial
changes for most of these in other reports.) Because of the critical analvsis
that we were attempting to do, these ambiguities probably caused us more trouble

than they would other readers. These ambiguities include the followinu:

L. The nature of user function definition, whether by def-statement
declaration or execution, is uncertain, largely because of confusic
elsewhere about the dynamic and static qualities of other declarative
statements. Our specification considers user function definition to
be a static language property; def-statements are not treated as

executable statements.
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Except in the formal syntax, there is a general failure to distinguish
between "statements" and '"lines'. The term '"statement line'" is some-
times used in an attempt to gain greater clarity. The intended mean-
ing can be determined, but the critical reader's task is more difficult

than it need be.

The phrase "line number" is sometimes used when '"line number value"

is indubitably meant.

The discussion of optimization is not clear at all. This is a problem
that was reported, but that did not directly affect the specification
written since the impact of optimization was ultimately ignored in

that specification.

The description of gosub-statements is ambiguous in that one inter-
pretation of the given wording would effectively allow an unlimited
number of unreturned gosubs. Our specification introduces an im-
plementation parameter for this number and assigns it a value of ten;
this value is one interpretation, and a likely one, for the descrip-

tion that appears in the draft proposal.
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! FORMALIZATION OF IMPLEMENTATION DEPENDENCIES

Acceptable methods of characterizing those aspects of programming language
design that are conventionally left to be defined through implementation are
not yet available. The difficulty appears when attempting to formulate speci-

fications so that:

A Intentional machine and environmental differences may be clearly and
precisely stated. At the very least, differences are expected to
exist among language implementations because of differing data rep~

: resentations, computational incompatibilities, conflicting error

treatments, operating system induced discrepancies, etc. The extent

of differences among implementations will largely be determined by
how strongly code transferability has influenced the design of a
particular programming language, but differences are expected even for

languages commonly considered "machine independent.'

2. Optimizatioi. options can be formally given. Different language
processors are expected to order operations differently and otherwise
generate code that is meant to capitalize upon the unique features
of a given machine. The code produced may also be influenced by the
compiling techniques that are employed to improve compiler efficiency.
Computing efficiency is thereby realized but in ways that are hard to

describe precisely.

Thus one goal in writing language standards is the construction of a specifica-
tion that describes the idealized (machine independent part of the) language,
while #lso permitting clear identification and specification of features whose
meanings are left to be the consequences of a given execution environment. If
possible, the implementation dependent parts should be described to the extent
that the range of acceptable implementations can be clearly made part of the

language defining specification.

Because SEMANOL(76) is meant to provide an operational specification, the
SEMANOL(76) specification must be made complete through some form of precise

specification for all the machine and implementation factors that could other-
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wise be dismissed in a conventional specification method; machine details and
evaluation order cannot be ignored here. That is, the complete SEMANOL(76)
specification is itself an. implementation, and consequently it must include a
specification of semantically significant machine features. This is possible
with SEMANOL(76) since its data representations and operators are indeed machine
independent and capable of modeling conventional machine features. A conscien-
tious effort is then made, as in writing the SEMANOL(76) specification of
Minimal BASIC, to Separate these machine details from the other code so that
they do not obscure the broader semantic specification. For example, the
implementation specific semantics of arithmetic operations are described by

the SEMANOL(76) metalanguage, and then appear in a distinguished part of the
specification that is meant to describe the machine-dependent elements of the
semantics. Standards for similar computers can then be prepared by revising
the SEMANOL(76) code that expresses these machine dependencies. In fact, a
strong effort is made to parameterize these features so that a family of
specifications can be built, each differing from the other only in the values

given to these machine dependent parameters.

It should also be noted that machine details can oftentimes be given in
external functions. The SEMANOL(76) metalanguage supports this option through
the #EXTERNAL-CALL-OF feature. As a result, a library can be built that con~-
tains routines to simulate the hardware and operating system functions that
are needed to complete the description of the language being defined. Implemen-

tation dialects can then be distinguished by separate libraries.

The difficulty with this type of approach is that it produces a specifica-
tion particular to a given computer or, at best, to a class of similar machines.
If the language under definition is to be widely used, the SEMANOL(76) method
is then guilty of overspecification in some respects. (But note that some
programming languages have been designed so that the areas of specification
left for implementation determination are so extraordinarily broad that each
language implementation can reflect virtually a different language. In such
cases, any usefully complete specification method will necessarily correspond
to an implementation and so might be thought overspecific.) For some language
features, there may be no way to relieve this problem. In such cases, as for

unrestricted pointer variables, it may simply be necessary to supply alternate
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definitions for each implementation that is envisioned. That is, there are
likely to be programming language features for which suitable constraints
cannot be formulated nor a suitable degree of abstraction obtained. However,
for arithmetic it appears that SEMANOL(76) can provide a useful implementation
independent way of characterizing what is to be allowed and doing so in a
formal manner. This method was investigated in this contract relative to its
use with Minimal BASIC and, although not yet fully developed, it appears very

attractive.

The central idea is that (1) the representation of constants and the
results of arithmetic operations can be given a "standard" definition, (2)
each implementation will likewise be described in terms of its corresponding

manner of representation and operation, and (3) the implementation and standard

results must agree to some given precision. Thus a condition such as

standard-floating-add(x,y)-implementation-floating-add(x,y) |<e(add,x,y)
must hold. The standard-floating-add function would be written in the SEMANOL (76)
metalanguage since, as the standard function, it must be fixed as well as
available for public review. We presently expect the standard arithmetic rep-
resentations and operations to essentially reflect a machine whose precision
exceeds that of contemporary machines. Implementation-floating-add can either
be expressed in the SEMANOL(76) metalanguage or as an external function (but
it must correspond to what happens for a given language processor upon a given
host machine). The allowable difference, denoted by €, would be given by
SEMANOL(76) specification and could be expressed as a constant or a function.
It would be desirable if e might itself be expressed as an implementation
independent constraint and so might be a fixed part of the standard definition;
however, it is not clear that this can generally be done in an acceptable way.
But even if € is itself selected on an implementation-by-implementation basis,
its appearance in the SEMANOL(76) specification provides a basis of conformance
testing. It also makes clear the quality of a given implementation relative
to a standard implementation, and can allow qualitative comparison of various
implementations to be done.

This approach to the semantics of evaluation would be expressed so that

Minimal BASIC "+'", to continue the example, is interpreted to mean implementation-
floating-add, subject to the constraint that the value returned must be within

€ of the standard-floating-add. Thus both add operations would be evaluated,
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as would €, and the computation would be allowed to continue (i.e., would be
correct) only if the constraint were met. The value carried through the
calculation would be that of the implementation-floating-add. This might be
given in SEMANOL(76) as follows:

#iDF floating-add(x,y)=implementation-floating-add(x,y)#IF ?
absolute-difference(standard-floating-add(x,y),implementation- |
floating-add(x,y))<epsilon('fad',x,y);

=error {#OTHERWISE#.

In terms of the partioning of the SEMANOL(76) specification, the defini-
tions of floating-add and standard-floating-add would appear in the common
part while implementation-floating-add (and its subsidiary definitions) would
be part of the implementation dependent portion of the specification. As
suggested, we hope that epsilon can be given by a generalized function and so
be part of the specification; if such generalization cannot be achieved, then
the value of epsilon would appear in the implementation dependent part of the

specification.

Thus a SEMANOL(76) specification can make very precise what the operation
denoted by "+'" means, for instance. Conventional specifications leave such
basic operations undefined, although the informal expectation is that addition
will be done using the instruction and data representations natural to the
host computer. Whether this notion should be extended to built-in functions
(e.g., SIN, COS, SQRT) is uncertain since it appears that language designers
often intend that certain functions be provided but really are uninterested in
their specific operation (i.e., semantics). The question is thus seen as one of
of deciding whether built-in functions are to be part of a programming language;
if so, then language design must include an effort to define these functions
much more carefully than has been true in the past. It seems SEMANOL(76) can
readily provide the needed clarity of definition here too if it becomes ap-

propriate to do so.

The second part of the problem deals with optimization. SEMANOL(76)
specifies an exact sequence of steps to be performed in executing a computation.
That is, the semantics are described in a totally deterministic manner. Thus
the SEMANOL(76) method of describing computation fulfills the declaration of
the ANSI/X3 committee that language standards should specify the order of
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expression evaluation. However, the committee did not rule out allowed
deviations from that order, and the normal demands for computer efficiency,

in any case, can be expected to result in continuing efforts to generate better
code through the use of clever optimization techniques. To accomplish opti-
mization demands that compiler writers must have some latitude in choosing how
code is generated. In consequence, the ability to optimize means that a com-
piler is free to generate code which may produce answers which differ from
those which would be obtained by strict adherence to the stated evaluation
rules.

We would like to have a method of rigorously describing allowable opti--
mization choices, and desire such a method of optimization specification to be
reflected in the output from the SEMANOL(76) Interpreter. Our belief is that
a partial solution to this problem can be developed by dealing with optimiza-
tion in terms of alterations to the parse tree, and including within the
standard specification a set of constraints that govern what an implementation
may legally do in transforming the parse tree. Each implementation could be
represented through inclusion of its optimization procedures, expressed in
SEMANOL(76) or by an external function, within the total SEMANOL(76) specifica-
tion. This optimization procedure would correspond to the optimization al-
gorithms used by a given implementation. This optimizing procedure would be
activated after the context-free parse (and context-sensitive testing) would
be performed but before execution interpretation would be started. The revised
(i.e., optimized) parse tree would then be tested to determine that it was
still syntactically derivable from the original grammar (and met the context-
sensitive tests), and that the transformations made were allowed under the
optimization constraints that exist for the language being defined. This test
for parse tree equivalence would be expressed in SEMANOL(76) code. Observe
that optimization would be dealt with here in source language terms; this
would be necessary if one is to characterize optimization for a variety of
computers. This method does deal with a static form of operation reordering,
such as a compiler might make; it does not consider any form of dynamic opti-
mizationthat an interpreter or computer might be able to achieve during

execution.
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The fact that the allowable optimization transformations for a language
could be given precisely would be very helpful. The availability of the
SEMANOL(76) Interpreter, and so of a way to test implementation optimization
algorithms, would also be useful. It would provide an excellent tool for
developing optimization techniques that meet the standard requirements for
optimization. It also would provide a method by which implementation confor-
mance with its stated formal characteristics could be tested, a more precise

testing mechanism than has heretofore been available with SEMANOL(76).
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CONCLUSIONS AND RECOMMENDATIONS

This project was successful in preparing a SEMANOL(76) metalanguage speci-
fication of the Minimal BASIC programming language that was complete, precise
(by the nature of the SEMANOL(76) metalanguage), and well tested. The exten-
sive testing of the specification that was done, by means of the SEMANOL(76)
Interpreter computer program, insured the soundness of the Minimal BASIC speci-
fication product. The specification process itself caused many questions about
the X3J2 draft proposal to be identified and reported; the application of
SEMANOL(76) thereby provided a useful critical analysis to the conventional
Minimal BASIC definition document. This project thus met its objectives,

and so created a useful formal specification of Minimal BASIC.

This project was also able to deal somewhat with the problem of programming
language dependency upon implementation factors. This effort is evident in the
form given to the SEMANOL(76) specification of Minimal BASIC, which was written
so as to be especially revealing about those aspects of the programming language
that are meant to be dependent upon the implementation of each language proces-
sor. In addition, a prospective means of formally characterizing machine arith-
metic and optimization options was developed. While this development was prom-
ising, it was unexpected and so could not be fully applied to Minimal BASIC

because of contract limitations.

There are two natural extensions of this work that should be considered
for future activity. The first extension is to update the Minimal BASIC
specification we have delivered to agree with the ANSI standard that is even-
tually adopted. As we have observed in this report, the specification prepared
in this project reflects the X3J2 committee draft proposal of January 1976.
At least one other version has been produced, in December 1976, that changed
the Minimal BASIC programming language slightly; other changes and clarifications
remain possible. These changes ought to be incorporated into the formal
specification we have provided with SEMANOL(76). The second extension is to
attempt to apply the proposed methods of formally dealing with arithmetic and
optimization standards for language processors. Because Minimal BASIC is a

somewhat simpler language than most, and because the matter of implementation
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dependencies has already been faced in the draft proposal, Minimal BASIC
appears to be an excellent vehicle for attacking this difficult theoretical
and practical problem. Taken together, these two extensions would provide a

uniquely comprehensive specification for Minimal BASIC.
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ADDENDUM
Operating Instructions for the SEMANOL(76) Specification of BASIC

Before any Minimal BASIC programs can be interpreted using the SEMANOL(76)
Executer and the SEMANOL(76) specification of Minimal BASIC, the user
must be able to reference, from his working directory, both the translated
SEMANOL(76) specification of Minimal BASIC (SIL code) and the SEMANOL(76)
Executer. In a one-time operation, this is done by creating Tinks from
the user's directory to these files. The link to the SIL code can be
created with the following Multics command:

1k > user _ dir _ dir > 5550c0840 > Hart > file 22.basic.76

Since many different functions can be performed by the SEMANOL(76)
Executer, many links from the user's directory to the Executer need to
be created. To simplify this task for the user, an exec com segment

has been written which, if executed, will generate all of the necessary
links. Therefore, the user needs first, to generate a link to this
exec_com segment, and, second, to execute the segment. This can be done
with the following sequence of commands:

k > user_ dir __ dir > 5550c0840 > ERAnderson >
new_interp > check > executer_link.ec

ec executer_link

Once the appropriate links have been constructed, the Minimal BASIC SIL
file must be initialized and loaded. This is done with the following
command:

semanol file22.basic.76

This step needs to be performed only once during a single user process.
After it is completed, as many Minimal BASIC programs as desired can be
successively interpreted. The output from this command consists of
several pairs of lines of the form

scomp called
scomp returns

The Minimal BASIC program to be interpreted should be contained in a

Multics segment, for example one named file.prog. Each line in the program
must be terminated by a line feed ([LF]) character; this character is inserted
naturally by the normal editing process. If there is any input data,

that is, information to be read by an INPUT statement, it should be

contained in a second Multics segment, e.g., file.data. Again, each line
should be terminated by a line feed. Then, to run the Executer, the

following command should be used:




run file.prog file.data
"f there is no input data, the appropriate command is
run file.prog

The run command can be executed as many times as desired, using different
values of file.prog and/or file.data; each such execution causes inter-
pretation of a single BASIC program.

The output from a run command consists of the results of executing any
PRINT statements encountered in the BASIC program. In addition, if any
INPUT statements are encountered, a question mark (?) is output, followed
by a space and the line that is to be input. This mimics the interactive
protocol. If any errors are encountered while processing the specification
with the current BASIC program as input.messages are output to the user.
Such errors can indicate either an erroneous BASIC program or a bug in the
SEMANOL(76) specification of BASIC. The former kind of error is designated
by a descriptive message (e.g., "subscript out of bounds"); if the error

is fatal, the following four lines also are output:

execution terminated

mstop called

in fatal-error at location 23:level 7
STOP

An error in the SEMANOL(76) specification of BASIC, on the other hand, is
indicated by the following line:

merr called
Finally, on termination, a few lines are output by the Executer.

The SEMANOL(76) Exeucter has several additional capabilities, which are
used mainly for debugging language specifications written in SEMANOL(76).
For the most part, these features will be discussed in the Executer docu-
mentation. However, one feature that may be of some interest now is the
ability to trace the evaluation of a SEMANOL specification (of Minimal
BASIC, in this case). The trace feature itself has many different options,
not discussed here, but to turn the full trace on, the following command
suffices:

tron #CONTROL

This command should be given following the semanol command, but before a

run coomand. It should be noted that the amount of trace aenerated is quite
extensive, even for the simplest BASIC programs, so it is not recommended
that this feature be used in the normal course of operation. To turn the
full trace off, if it is on, the following command should be given preceding
any run command:

troff #CONTROL




BASE UNITS:
_Quantity

length

mass

time

electric current
thermodynamic temperature
amount of substance
luminous intensity

SUPPLEMENTARY UNITS:

plane angle
solid angle

DERIVED UNITS:

Acceleration

activity (of a radioactive source)
angular acceleration
angular velocity

area

density

electric capacitance
electrical conductance
electric field strength
electric inductance
electric potential difference
electric resistance
electromotive force
energy

entropy

force

frequency
illuminance
luminance

luminous flux
magnetic field strength
magnetic flux
magnetic flux density
magnetomotive force
power

pressure

quantity of electricity
quantity of heat
radiant intensity
specific heat

stress

thermal conductivity
velocity

viscosity, dynamic
viscosity, kinematic
voltage

volume

wavenumber

work

SI PREFIXES:

METRIC SYSTEM

Unit

metre
kilogram
second
ampere
kelvin
mole
candela

radian
steradian

metre per second squared
disintegration per second
radian per second squared
radian per second

square metre

kilogram per cubic metre
farad

siemens

volt per metre

henry

volt

ohm

volt

joule

joule per kelvin

newton

hertz

lux”

candela per square metre
lumen

ampere per metre

weber

tesla

ampere

watt

pascal

coulomb

joule

watt per steradian

joule per kilogram-kelvin
pascal

watt per metre-kelvin
metre per second
pascal-second

square metre per second
volt

cubic metre

reciprocal metre

joule

Multiplication Factors

1 000 000 000 D00
1 000 000 000

0 000 001

0.000 000 001

0.000 000 000 001

0.000 000 000 000 001
0.000 000 000 000 000 001

* To be avoided where possible

- ]0!1
=10°
=10*
=10
=10?
10"
10!
10~
107!
10°*
WY
10"
10-'*
10-!0

W ko

S1 Symbol

m

kg

s

A

K

mol

cd

rad

sr

S

H

\Y

\I

)

Hz

Ix

Im

Wb

o

A

w

Pa

C

]

Pa

)
Prefix
tera
Riga
mega
kilo
hecto®
deka®
deci®
centi®
milli
micro
nano
pico
femto
atto

_Formula

m/s
(disintegration)/s
rad/s
rad/s
m
kg/m
A-slV
AN
Vim
V-siA
WIA
VIA
WIA
N-m
JIK
kg-m/s
(cycle)/s
Im/m
cd/m
cd-sr
A/m
Vs
Wb/m
Vs
N/m
As
N-m
Wisr
J/kg-K
N/m
Wm-K
mis
Pa-s
mis
WA
m
(wave)m
N-m

S1 Symbal

s=-ga3gg" 13”';‘:"




MISSION
of

Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(c?) activities, and in the ¢ areas of information sciences
and intelligence. The principal technical mission areas

are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.
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